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FRACTIONAL VORONOVSKAYA ASYMPTOTIC EXPANSIONS
BY QUASI-INTERPOLATION NEURAL NETWORK OPERATORS
APPLIED TO BROWNIAN MOTION

GEORGE A. ANASTASSIOU ' AND DIMITRA KOULOUMPOU 2

ABSTRACT. Here we use quasi-interpolation neural network operators of one hid-
den layer based on sigmoidal and hyperbolic tangent activation functions. In
particular we apply fractional Voronovskaya asymptotic expansions related to the
error of approximation of these operators to the unit operator.These are applied
to Brownian motion over the two dimensional sphere. So we produce fractional
asymptotic expansions for a general expectation of Brownian motion via neural
networks. We finish with several interesting specific applications.

1. INTRODUCTION

The first author in [1] and [2], see Chapters 2-5, was the first to establish neu-

ral network approximation to continuous functions with rates by very specifically
defined neural network operators of Cardaliaguet-Euvrard and “Squashing” types,
by employing the modulus of continuity of the engaged function or its high order
derivative, and producing very tight Jackson type inequalities. He treats there both
the univariate and multivariate cases. The defining these operators “bell-shaped”
and “squashing” functions are assumed to be compact support. Also the first author
inspired by [9], continued his studies on neural networks approximation by introduc-
ing and using the proper quasi-interpolation operators of sigmoidal and hyperbolic
tangent type which resulted into [5], by treating both the univariate and multivari-
ate cases. He did also the correspoding fractional cases [6],]7].
Here the authors based and inspired by [13], they give Voronovskaya type fractional
asymptotic expansions for a general expactation of Brownian motion over the two
dimensional sphere, induced by neural networks and at the end they provide many
important specialized applications. We are motivated by [8]. For general knowledge
about neural networks we recomend [14]-[16]. For recent studies in neural networks
we refer to [17]-[26].

2. BASICS
We need
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Definition 2.1. Let v > 0, n = [v] ([-] is the ceiling of the number), f €
AC™ ([a,b]) (space of functions f with f(»~1 € AC ([a,b]), absolutely continuous
functions). We call left Caputo fractional derivative (see [10], pp. 49-52) the function

DLt 0) = gy | @0 O 1)

V z € [a,b], where I is the gamma function I' (v) = [;° e~ "t"~!dt, v > 0. Notice
DY f € Li([a,b]) and DY, f exists a.e.on [a, b].
We set DY f (z) = f (z),V = € [a,b] .

Definition 2.2. (see also [11], [12]). Let f € AC™ ([a,b]), m = [«], o > 0. The

right Caputo fractional derivative of order o > 0 is given by

_1\™ b
Dy f (z) = Fgmlia) / (C—a)ym ot fm () dg, (2)

V z € [a,b]. We set DY f(x) = f(z). Notice D¢ f € Ly ([a,b]) and D f exists
a.e.on [a,b].

Convention 2.1. We assume that

D, f(x) =0, for z < xo, (3)
and
Dy, f (z) =0, for x > o, (4)

for all z,zo € [a,b].

See also the related [3], [4].
We consider here the sigmoidal function of logarithmic type

(@) = ¢ pers
It has the properties xgrfoon () =1 and xll)liﬂoon (x) =0.

z eR.

This function plays the role of an activation function in the hidden layer of neural
networks.

As in [9], we consider

1
K(x)::§(n(:1:+1)—n(x—1)), xr € R. (5)

We notice the following properties:
i) K (xz) >0, VzeR,
ii) Zk—fooK(a:_k):jl? Vo eR,
i) oo K(nx—k)=1, VzeR;neN,
iv) [T K (z)dx =1,
)
i)

.

v) Kisa den81ty function,
vi) K is even: K (—z) = K(x), x > 0.

We see that ([9])

e -1 e’
Kle)= ( 2 > (L4 e 1) (I+eot) ©)
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e —1 1
2¢2 ) (1+er~1)(1+e="1)
vii) By [9] K is decreasing on R, and increasing on R_.
viii) By [6], Ch. 5, forn € N, 0 < 8 < 1, we get

o0

ez -1
2

K (nx—k) < < ) e = 3.192¢ "7, (7)

k= —o0
:nz — k| > nt=F
Denote by |-] the integral part of a number. Consider z € [a,b] C R and n € N
such that [na] < [nb].
ix) By [6], Ch. 5, it holds

1 1
< oy = 5:250312578, ¥ x € [a, ). (8)

St K (e —k) K1)

x) It holds nh_)ngo Z,EZI’HM] K (nx — k) # 1, for at least some z € [a,b]. See also
[6], Ch. 5.

Let f € C([a,b]) and n € N such that [na] < [nb].
We study further (see also [6], Ch. 5) the quasi-interpolation positive linear neural
network operator

[nb]
Zk [na] ( ) K (TZZE - k)
nb )
St K (na — k)
For large enough n we always obtain [na] < |nb]. Also a < % <, iff [na] <k <

|nb]|.
We also consider here the hyperbolic tangent function tanhz, z € R :

H, (f,x):= € [a,b]. 9)

T —x 621’ -1
tanh z := = .
et 4+ e T ez +1
It has the properties tanh0 = 0, —1 < tanhz < 1, V z € R, and tanh (—z) =
—tanh z. Furthermore tanhz — 1 as ¢ — oo, and tanhz — —1, as xr — —o0o, and
it is strictly increasing on R. Furthermore it holds % tanhz = h2 > 0.
This function plays also the role of an activation function in “the hidden layer of
neural networks.
We further consider

M (z) = i (tanh (z + 1) — tanh (z — 1)) > 0, ¥z € R. (10)

We easily see that M (—z) = M (x), that is M is even on R. Obviously M is
differentiable, thus continuous.
Here we follow [5]

Proposition 2.2. M (x) for x > 0 is strictly decreasing.



124 GEORGE A. ANASTASSIOU AND DIMITRA KOULOUMPOU
Obviously M (z) is strictly increasing for z < 0. Also it holds lim M (z) =0=
T——00
lim M (z).
Tr—00

Infact M has the bell shape with horizontal asymptote the z-axis. So the maxi-
mum of M is at zero, M (0) = 0.3809297.

Theorem 2.3. We have that Y2 M (x—i)=1, Yz eR.
Thus

o0

Z M((nx—i)=1, VneN, VzeR.
Furthermore we get:

Since M is even it holds > o2 M (i —z) =1, Vz € R.

Hence > 2° (z+x)—17V$€R and Y0 M(z+i)=1, VxzeR.

l_—OO 1=—00

Theorem 2.4. It holds [*° M (x)dz = 1.
So M (x) is a density function on R.
Theorem 2.5. Let 0 < <1 andn € N. It holds

Z M (nz — k) < 2¢*- e (11)

=—00
s nx — k| > n!F8

Theorem 2.6. Let x € [a,b] C R and n € N so that [na] < [nb]|. It holds

1 1
< 41488766 = ———. (12)
Z}Lbﬁnﬂ M (nx — k) M (1)
Also by [5], we obtain
Lnb)
nh_}rrgo k; ] M (nx — k) #1, (13)

for at least some z € [a, b].

Definition 2.3. Let f € C ([a,b]) and n € N such that [na] < [nb].
We further study, as in [5], the quasi-interpolation positive linear neural network
operator

Sy £ (5) M (na — k)

E,(f,x):= - , € la,bl. (14)
,E:bgmﬂ M (nx — k)

We find here fractional Voronovskaya type asymptotic expansions for H, (f,z)
and E, (f,z), z € [a,b].

For related work on neural networks also see [6], [7].
We need,
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Theorem 2.7. ([6], Ch.5) Let o >0, N € N, N = [a], f € ACY ([a,}]), 0 <

B <1, z¢€lab], n €N large enough. Assume that Hch‘,fHoo’[a,w}, D% fll o) <
O, © > 0. Then

N-1

Hy, (fox) = f(z) =)

j=1

f(j;!(x) i, ((. _ x)j) (z) + 0 (715(3!_6)) , (15)

where 0 < € < a.
If N =1, the sum in (15) collapses.
The last (15) implies that
N-1

() (g ;
nﬁ(a—s) H, (f7$) —f (ZL‘) . Z f JJ'( )Hn (( — ;L‘)j) (.7}) — 0, (16)

i=1

asn—>oo,0<£§04.‘
When N =1, or fU) (x)=0,j7=1,...,N — 1, then we derive that

n?O) [Hy (f,2) = f (2)] = 0

asn — 00, 0 < e < a. Of great interest is the case of a = %

Next we also need,

Theorem 2.8. (6], Ch.5) Leta >0, N € N, N = [a], f € ACY ([a,}]),0< 3 <

1, z € [a,b], n € N large enough. Assume that HD;‘,fHOO 2]’ HDffooo,[x,b] <0,
© > 0. Then o
N-1

B, (f,2) = f(z) =)

Jj=1

P (=) @ +o (g ). 07

where 0 < € < a.
If N =1, the sum in (17) collapses.
The last (17) implies that
N-1

nPe=e) E, (fiz)— f(z) - Z

j=1

~

) (5 .
B (o) @] s0. 0y

asn—>oo,0<£§a.'
When N =1, or fU) () =0,j=1,...,N — 1, then we derive that

nPCE (B, (f,2) — f(2)] = 0

asn — 00, 0 < e < a. Of great interest is the case of a = %

3. ABOUT BROWNIAN MOTION ON 2—DIMENSIONAL SPHERE
The Brownian motion ([13]) on S™ is a diffusion (Markov) process W, t > 0, on
S™ whose transition density is a function P(¢,z,y) on (0,00) x S™ x S™ satisfying
oP 1
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and
P(t,z,y) = 6.(y) as t — 0" (20)

where A,, is the Laplace-Beltrami operator of S™ acting on the x-variables and 0 (y)
is the delta mass at z, i.e. P(t,z,y) is the heat kernel of S™. The heat kernel exists,
it is unique, positive, and smooth in (¢, z,y).

We mention,

Proposition 3.1. ([13]) The transition density function of the Brownian motion
Wi, t >0 on S? with radius a it is given by the function

pit.0) = o S+ e (2 by ey
neN

Theorem 3.2. ([8]) Consider function g : R — R, which is bounded on [0, 7], i.e
there exists M > 0 such that |g(¢)| < M, for every ¢ € [0,7], and Lebesgue mea-
surable on R. Let also W (t,¢) be the Brownian motion on S%. Then the expectation

B (g ) = [ late)l . 0)ds (22)
s continuous in t, and
E(lgW)]) (t) < mMp (to, do) , (23)
where
p (to, o) = max p(t, @), with0 <ty < to.

(t,0)Et1,t2]x[0,7]

Here p(t, ¢) is the transition density function of the Brownian motion Wi, t > 0 on
S? given by (21).

Proposition 3.3. ([8]) Consider function g : R — R, which is bounded on [0, 7]
and Lebesgue measurable on R. Let also W (t,¢) be the Brownian motion on S2.

Then the expectation
B (sW)) (0= [ @)t 0)do

1s differentiable in t, and

O ( !g / o ))d<b, (24)

which is continuous in t.

Remark 3.1. We observe that p(t,p) € C* (R — {0}) with respect to ¢t > 0.
¥ E(lg(W)))

Acting similarly as in Proposition 3.3, we obtain that E (]g(W)|)(j) = 5

exist and are continuous for ¢ > 0 and any j € N.



FRACTIONAL VORONOVSKAYA ASYMPTOTIC EXPANSIONS 127

4. MAIN RESULTS

Here we present the following results about Brownian Motion by neural network
operators.

Proposition 4.1. We consider E (|g(W)]|) (t) as in (22). Let « > 0, N € N,
N =la],0< <1, t€[t1,ta], where t; > 0,t; < ta,n € N large enough. Then

Hy, (E(lg(W)]),t) = (E(lgW)]) () =
(4) )
E (‘Q(W;')D () H, (( . t)j) (t) +o ( 1 > : (25)

N-1

nﬁ(a*E)

j=1

where 0 < ¢ < a.
If N =1, the sum in (25) collapses.
The last (25) implies that

WP [, (B (lg(W)]) ) — (B (lg(W)]) (4) ~
S Bl (1)
!

H ((=07) 0] >0, (26)
j=1

asn — 00, 0<e<La.
When N =1, we derive that

nfC [H, (E(|gW)]),t) = (E (lg(W)]) (£))] = 0
asn — 00, 0 < e < a. Of great interest is the case of a = %
Proof. From Theorem 2.7. O
Next we give,

Proposition 4.2. We consider E (|g(W)|) (t) as in (22). Let « > 0, N € N,
N = [al, t € [t1,t2], where t; > 0,t; < ta,n € N large enough. Then

Ey (E(lgW)),t) = (E(lgW)]) (1) =
@) .
E(Q(V[;')D (t)En (( . t)]) ) +o ( 1 ) : (27)

nﬁ(a—&)

N-1

i=1

where 0 < e < a.
If N =1, the sum in (27) collapses.
The last (27) implies that

nPC=E (B, (E (lgW)]),t) — (B (lg(W)]) () —
= E(lgwm)h? (1)
5!

D

j=1
asn — 00, 0<e<La.
When N = 1, we derive that

nfC= B, (E(]gW)]) ) = (E (Jg(W)]) (£))] = 0

asn — 00, 0 <e < a. Of great interest is the case of a = %

e

1

E, ((- - t)j) @] = o, (28)
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Proof. From Theorem 2.8. O

5. APPLICATIONS

We can apply our main results to the function g(W) = W.
Consider the function g : R — R, where g(z) = z for every = € R. Let also W (¢, ¢)
be the Brownian motion on S2. Then the expectation

E(W)) / op(t, 6)d
is continuous in t.

Moreover

Corollary 5.1. Let « > 0, N € N, N = [a], 0 < 8 < 1, t € [t1,t2], where
t1 > 0,t1 < to,n € N large enough. Then

N-1 ) 4
(w0 - Ewh )= X SO (-0 0o (s ).
j=1

(29)
where 0 < ¢ < a.
If N =1, the sum in (29) collapses.
The last (29) implies that

N-1
B E |W| (J ) .
Oy (B(W),0) = (B(W) (0) = Hy ((=t7) ()] =0,
7=1
(30)
asn — 00, 0 <e<a.
When N =1, we derive that
nPCH, (B (W), t) = (E (W) (1))] = 0
asn — 00, 0 < e < a. Of great interest is the case of a = %
Proof. From Proposition 4.1. O

Next we obtain,

Corollary 5.2. We consider N € N, N = [a], t € [t1,t2], where t1 > 0,81 <
ta,n € N large enough. Then

N-1
E (]W)) ; 1
BB QW0 - m v @)= - E O () 4o C=il
7=1
(31)
where 0 < € < a.
If N =1, the sum in (31) collapses.
The last (31) implies that
- B |W| (1) -
O By (B (W), 6) = (B(W) (£) = > S —2E (( =t/ ) ()| -0,
7j=1

(32)
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asn — 00, 0 <e<a.
When N =1, we derive that
nPCmIE, (E (W), 1) — (E (W) (t)] = 0
asn — 00, 0 < e < a. Of great interest is the case of a = %
Proof. From Proposition 4.2. ]

For the next corollaries we consider the function g : R — R, where g(z) = cosx for
every € R. Let also W (t, ¢) be the Brownian motion on S2. Then the expectation

B (cos (W) (1) = | leos ot )ao
is continuous in t.

It follows,

Corollary 5.3. Let « > 0, N € N, N = [a], 0 < 8 < 1, t € [t1,t2], where
t1 > 0,t; < ty,n € N large enough. Then

Hy (E([cos (W)]),2) — (E (Jcos (W)]) (1)) =

B (Jcos <§!V>><j> O, (- 07) 0 +0 (mi—a) , (33)

N-1

j=1
where 0 < € < a.
If N =1, the sum in (33) collapses.
The last (33) implies that
0O [Hy, (E (Jeos (W)]) 1) — (B (Jcos (W) (1)) -

N-1

E (jcos (W) (1) -
MO p, (1) 0] » 0. (34

- J:
j=1
asn — 00, 0 <e<a.
When N =1, we derive that

nP <) [H,, (E (|cos (W)]) ) — (E (Jcos (W)]) (£))] — 0
asn — 0o, 0 <e < a. Of great interest is the case of a = %
Proof. From Proposition 4.1. O

Next we obtain,

Corollary 5.4. We consider N € N, N = [a], t € [t1,t2], where t1 > 0,11 <
to,n € N large enough. Then

En (E ([cos (W)]) 1) = (E (Jcos (W)]) (1)) =

B (Jeos (;VW O, (= 19) ®) +o (Mia) , (35)

N-1

7=1
where 0 < € < a.
If N =1, the sum in (35) collapses.
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The last (35) implies that
PO [, (B (Jeos (W)]) 1) = (E (Jeos (W)]) (1)) —

N-1

COS (]) j
E(] (?!/)D (t) B, (( _ t)J) ®)| — o, (36)

1

e

asn — 00, 0 <e<a.
When N =1, we derive that

n@) B, (E (Jcos (W)]) 1) — (E (|cos (W)]) (£))] = 0
asn — 0o, 0 <e < a. Of great interest is the case of a = %
Proof. From Proposition 4.2. O

Note 5.5. Similar results can be obtain for g : R — R, where g(z) =sinz,z € R

Let the function g : R — R, where g(x) = tanh x for every x € R. Let also W (¢, ¢)
be the Brownian motion on S2. Then the expectation

E (Jtank (W)]) (t) = /0 " Jtanh(6)| p(t, )

is continuous in t.
Furthermore,

Corollary 5.6. Let « > 0, N € N, N = [a], 0 < 8 < 1, t € [t1,t2], where
t1 > 0,11 < ta,n € N large enough. Then
Hy, (E (tanh (W)[) , ¢) — (E (Jtanh (W)|) ()) =
N-1 ;
E ([tanh (W))Y) (¢) ; 1
2 j! H, ((. 1) ) ) +0( ) (37)
j:
where 0 < € < a.
If N =1, the sum in (37) collapses.
The last (37) implies that

n =9 [H, (E (Jtanh (W)]) ,t) — (E ([tanh (W)]) () —

= E (Jtanh (W) (1)
i "

A W (C=87) o] =o. (38)

J

asn — 00, 0 <e<a.
When N =1, we derive that

P~ [H,, (E ([tanh (W)|) ,t) — (E ([tanh (W)]) (¢))] = 0
asn — 00, 0 < e < a. Of great interest is the case of a = %
Proof. From Proposition 4.1. O

Next we give,
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Corollary 5.7. We consider N € N, N = [a], t € [t1,t2], where t; > 0,81 <
ta,n € N large enough. Then

En (E (Jtanh (W)]) ,¢) — (E ([tanh (W)]) (1)) =

B (ftanh (W)Y (1) ; 1
; il E, ((- —t) ) (t)+o <nﬁ(a_a)> , (39)

where 0 < € < a.
If N =1, the sum in (39) collapses.
The last (39) implies that

nP@=9) [E, (E (Jtanh (W)]) ,t) — (E (Jtanh (W)]) (¢)) —

=2

~ E ([tanh (W) (¢)

J!

(]

E, (<- _ t)j) @] o, (40)

j=1
asn — 00, 0 <e<a.
When N =1, we derive that

nP@= B, (E ([tanh (W)|) ,t) — (E (Jtanh (W)[) (£))] = 0
asn — 00, 0 < e < a. Of great interest is the case of a = %
Proof. From Proposition 4.2. O

For the next application we consider the generalized logistic sigmoid function
g : R — R, where
glx) = (14 e_””)_é, and 0 > 0, for every = € R. Let also W(t, ¢) be the Brownian
motion on S2. Then the expectation

E((+e) ) () = /O (14 e?) it )ds

is continuous in t.
It follows,

Corollary 5.8. Let « > 0, N € N, N = [a], 0 < 8 < 1, t € [t1,t2], where
t1 > 0,t1 < ta,n € N large enough. Then

Hy (BE((+e™) ) t) = (B(0+e™) ) 1) =

N-1F ((1 + e—W)*‘S)(j) (t)

3 : g (=) 0o (s ) Ay

j=1

where 0 < € < a.
If N =1, the sum in (41) collapses.
The last (41) implies that
nPla—e).

(B ((0+e™)7) ) = (B((1+e™) ) ) -
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N-1E ((1 + e—W)*5> & (t)

4!

H, ((- - t)j) 0] = o, (42)

Jj=1

asn — 0o, 0 <e<a.
When N =1, we derive that

e [, (B((1+e™) ")) = (B(0+e™) ) @)] =0

asn — 00, 0 < e < a. Of great interest is the case of a = %

Proof. From Proposition 4.1. O

Next we derive,

Corollary 5.9. We consider N € N, N = [a], t € [t1,t2], where t; > 0,1 <
ta,n € N large enough. Then

B (2 (04 ) .0) - (B () ) ) =

. W 5\ )
N-1F ((1 + - ) ) (t)En (( _ t)j) ) +o <n/3(i—€)> , (43)

j=1
where 0 < € < a.
If N =1, the sum in (43) collapses.
The last (43) implies that
nPla—e),

Ea(BE(0+e™) 7)) = (B(0+e™)) 1) -
N-1F ((1 + e—W)“S)(j) (t)
Jl

B (=) ()] =0, (44)
j=1
asn — 00, 0 <e<a.
When N =1, we derive that

e (B, (B ((1+e™) 7)) = (B(1+e™) ) 0)] >0

asn — 00, 0 < e < a. Of great interest is the case of a = %

Proof. From Proposition 4.2. O

The Gompertz function g : R — R, with g(z) = e ", u < 0 is a sigmoid function
which describes growth as being slowest at the start and end of a given time period.
Let W (t, ¢) be the Brownian motion on S2. Then the expectation

™

B ) 0= [ e it opis

is continuous in ¢.
Moreover,
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Corollary 5.10. Let « > 0, N € N, N = [a], 0 < 8 < 1, t € [t1,t2], where
t1 > 0,t; < ta,n € N large enough. Then

(2 ) ) = (2 () w) =

where 0 < € < a.
If N =1, the sum in (45) collapses.
The last (45) implies that

w00 i (5 (o) ) (8 () 0) -
v (o)
. !
1

H, ((- - t)j) ®)] o, (46)

e

asn — 00, 0 <e<a.
When N =1, we derive that

w00 i (50 ) ) (B (oY)

asn — 00, 0 < e < a. Of great interest is the case of a = %

Proof. From Proposition 4.1. O

Next we give,

Corollary 5.11. We consider N € N, N = [a], t € [t1,t2], where t; > 0,t; <
ta,n € N large enough. Then

B (B () t) = (B () @) =
N-1F <euefw)(j) (t)

; 1
Y
Y —n (=) 0+ (s ) (47)
]:
where 0 < € < a.
If N =1, the sum in (47) collapses.
The last (47) implies that

nfla—e) [En (E (e“efw) ,t) - (E (eM(W) (t)) -

g (e
]fllE(u j!) (t)En((-—t)j) ®] o, (48)

=

asn — 00, 0<e<a.
When N =1, we derive that

w0 1 (8 () ) (B (o) 0)]
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asn — 00, 0 <e < a. Of great interest is the case of a = %
Proof. From Proposition 4.2. O

Conclusion:

Using mathematical analysis methods we derived Voronovskaya type fractional
asymptotic expansions for the general expectation of Brownian motion over the two
dimensional sphere. These are realated to neural network approximation operators
which are activated by the sigmoidal and hyperbolic tangent functions.
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