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FRACTIONAL VORONOVSKAYA ASYMPTOTIC EXPANSIONS

BY QUASI-INTERPOLATION NEURAL NETWORK OPERATORS

APPLIED TO BROWNIAN MOTION

GEORGE A. ANASTASSIOU 1 AND DIMITRA KOULOUMPOU 2

Abstract. Here we use quasi-interpolation neural network operators of one hid-
den layer based on sigmoidal and hyperbolic tangent activation functions. In
particular we apply fractional Voronovskaya asymptotic expansions related to the
error of approximation of these operators to the unit operator.These are applied
to Brownian motion over the two dimensional sphere. So we produce fractional
asymptotic expansions for a general expectation of Brownian motion via neural
networks. We finish with several interesting specific applications.

1. Introduction

The first author in [1] and [2], see Chapters 2-5, was the first to establish neu-
ral network approximation to continuous functions with rates by very specifically
defined neural network operators of Cardaliaguet-Euvrard and “Squashing” types,
by employing the modulus of continuity of the engaged function or its high order
derivative, and producing very tight Jackson type inequalities. He treats there both
the univariate and multivariate cases. The defining these operators “bell-shaped”
and “squashing” functions are assumed to be compact support. Also the first author
inspired by [9], continued his studies on neural networks approximation by introduc-
ing and using the proper quasi-interpolation operators of sigmoidal and hyperbolic
tangent type which resulted into [5], by treating both the univariate and multivari-
ate cases. He did also the correspoding fractional cases [6],[7].
Here the authors based and inspired by [13], they give Voronovskaya type fractional
asymptotic expansions for a general expactation of Brownian motion over the two
dimensional sphere, induced by neural networks and at the end they provide many
important specialized applications. We are motivated by [8]. For general knowledge
about neural networks we recomend [14]-[16]. For recent studies in neural networks
we refer to [17]-[26].

2. Basics

We need
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Definition 2.1. Let ν > 0, n = ⌈ν⌉ (⌈·⌉ is the ceiling of the number), f ∈
ACn ([a, b]) (space of functions f with f (n−1) ∈ AC ([a, b]), absolutely continuous
functions). We call left Caputo fractional derivative (see [10], pp. 49-52) the function

Dν
∗af (x) =

1

Γ (n− ν)

∫ x

a
(x− t)n−ν−1 f (n) (t) dt, (1)

∀ x ∈ [a, b], where Γ is the gamma function Γ (ν) =
∫∞
0 e−ttν−1dt, ν > 0. Notice

Dν
∗af ∈ L1 ([a, b]) and Dν

∗af exists a.e.on [a, b].
We set D0

∗af (x) = f (x), ∀ x ∈ [a, b] .

Definition 2.2. (see also [11], [12]). Let f ∈ ACm ([a, b]), m = ⌈α⌉, α > 0. The
right Caputo fractional derivative of order α > 0 is given by

Dα
b−f (x) =

(−1)m

Γ (m− α)

∫ b

x
(ζ − x)m−α−1 f (m) (ζ) dζ, (2)

∀ x ∈ [a, b]. We set D0
b−f (x) = f (x) . Notice Dα

b−f ∈ L1 ([a, b]) and Dα
b−f exists

a.e.on [a, b] .

Convention 2.1. We assume that

Dα
∗x0

f (x) = 0, for x < x0, (3)

and

Dα
x0−f (x) = 0, for x > x0, (4)

for all x, x0 ∈ [a, b] .

See also the related [3], [4].
We consider here the sigmoidal function of logarithmic type

η (x) =
1

1 + e−x
, x ∈ R.

It has the properties lim
x→+∞

η (x) = 1 and lim
x→−∞

η (x) = 0.

This function plays the role of an activation function in the hidden layer of neural
networks.

As in [9], we consider

K (x) :=
1

2
(η (x+ 1)− η (x− 1)) , x ∈ R. (5)

We notice the following properties:

i) K (x) > 0, ∀ x ∈ R,
ii)

∑∞
k=−∞K (x− k) = 1, ∀ x ∈ R,

iii)
∑∞

k=−∞K (nx− k) = 1, ∀ x ∈ R; n ∈ N,
iv)

∫∞
−∞K (x) dx = 1,

v) K is a density function,
vi) K is even: K (−x) = K (x), x ≥ 0.

We see that ([9])

K (x) =

(
e2 − 1

2e

)
e−x

(1 + e−x−1) (1 + e−x+1)
= (6)
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e2 − 1

2e2

)
1

(1 + ex−1) (1 + e−x−1)
.

vii) By [9] K is decreasing on R+, and increasing on R−.
viii) By [6], Ch. 5, for n ∈ N, 0 < β < 1, we get

∞∑
{

k = −∞
: |nx− k| > n1−β

K (nx− k) <

(
e2 − 1

2

)
e−n(1−β)

= 3.192e−n(1−β)
. (7)

Denote by ⌊·⌋ the integral part of a number. Consider x ∈ [a, b] ⊂ R and n ∈ N
such that ⌈na⌉ ≤ ⌊nb⌋.

ix) By [6], Ch. 5, it holds

1∑⌊nb⌋
k=⌈na⌉K (nx− k)

<
1

K (1)
= 5.250312578, ∀ x ∈ [a, b] . (8)

x) It holds lim
n→∞

∑⌊nb⌋
k=⌈na⌉K (nx− k) ̸= 1, for at least some x ∈ [a, b]. See also

[6], Ch. 5.

Let f ∈ C ([a, b]) and n ∈ N such that ⌈na⌉ ≤ ⌊nb⌋.
We study further (see also [6], Ch. 5) the quasi-interpolation positive linear neural

network operator

Hn (f, x) :=

∑⌊nb⌋
k=⌈na⌉ f

(
k
n

)
K (nx− k)∑⌊nb⌋

k=⌈na⌉K (nx− k)
, x ∈ [a, b] . (9)

For large enough n we always obtain ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k
n ≤ b, iff ⌈na⌉ ≤ k ≤

⌊nb⌋.
We also consider here the hyperbolic tangent function tanhx, x ∈ R :

tanhx :=
ex − e−x

ex + e−x
=

e2x − 1

e2x + 1
.

It has the properties tanh 0 = 0, −1 < tanhx < 1, ∀ x ∈ R, and tanh (−x) =
− tanhx. Furthermore tanhx → 1 as x → ∞, and tanhx → −1, as x → −∞, and
it is strictly increasing on R. Furthermore it holds d

dx tanhx = 1
cosh2 x

> 0.
This function plays also the role of an activation function in the hidden layer of

neural networks.
We further consider

M (x) :=
1

4
(tanh (x+ 1)− tanh (x− 1)) > 0, ∀ x ∈ R. (10)

We easily see that M (−x) = M (x), that is M is even on R. Obviously M is
differentiable, thus continuous.

Here we follow [5]

Proposition 2.2. M (x) for x ≥ 0 is strictly decreasing.
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Obviously M (x) is strictly increasing for x ≤ 0. Also it holds lim
x→−∞

M (x) = 0 =

lim
x→∞

M (x) .

Infact M has the bell shape with horizontal asymptote the x-axis. So the maxi-
mum of M is at zero, M (0) = 0.3809297.

Theorem 2.3. We have that
∑∞

i=−∞M (x− i) = 1, ∀ x ∈ R.

Thus
∞∑

i=−∞
M (nx− i) = 1, ∀ n ∈ N, ∀ x ∈ R.

Furthermore we get:
Since M is even it holds

∑∞
i=−∞M (i− x) = 1, ∀x ∈ R.

Hence
∑∞

i=−∞M (i+ x) = 1, ∀ x ∈ R, and
∑∞

i=−∞M (x+ i) = 1, ∀ x ∈ R.

Theorem 2.4. It holds
∫∞
−∞M (x) dx = 1.

So M (x) is a density function on R.

Theorem 2.5. Let 0 < β < 1 and n ∈ N. It holds

∞∑
{

k = −∞
: |nx− k| ≥ n1−β

M (nx− k) ≤ 2e4 · e−2n(1−β)
. (11)

Theorem 2.6. Let x ∈ [a, b] ⊂ R and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. It holds

1∑⌊nb⌋
k=⌈na⌉M (nx− k)

< 4.1488766 =
1

M (1)
. (12)

Also by [5], we obtain

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

M (nx− k) ̸= 1, (13)

for at least some x ∈ [a, b].

Definition 2.3. Let f ∈ C ([a, b]) and n ∈ N such that ⌈na⌉ ≤ ⌊nb⌋.
We further study, as in [5], the quasi-interpolation positive linear neural network

operator

En (f, x) :=

∑⌊nb⌋
k=⌈na⌉ f

(
k
n

)
M (nx− k)∑⌊nb⌋

k=⌈na⌉M (nx− k)
, x ∈ [a, b] . (14)

We find here fractional Voronovskaya type asymptotic expansions for Hn (f, x)
and En (f, x), x ∈ [a, b].

For related work on neural networks also see [6], [7].
We need,
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Theorem 2.7. ([6], Ch.5) Let α > 0, N ∈ N, N = ⌈α⌉, f ∈ ACN ([a, b]), 0 <
β < 1, x ∈ [a, b], n ∈ N large enough. Assume that

∥∥Dα
x−f

∥∥
∞,[a,x]

, ∥Dα
∗xf∥∞,[x,b] ≤

Θ, Θ > 0. Then

Hn (f, x)− f (x) =

N−1∑
j=1

f (j) (x)

j!
Hn

(
(· − x)j

)
(x) + o

(
1

nβ(α−ε)

)
, (15)

where 0 < ε ≤ α.
If N = 1, the sum in (15) collapses.
The last (15) implies that

nβ(α−ε)

Hn (f, x)− f (x)−
N−1∑
j=1

f (j) (x)

j!
Hn

(
(· − x)j

)
(x)

 → 0, (16)

as n → ∞, 0 < ε ≤ α.
When N = 1, or f (j) (x) = 0, j = 1, ..., N − 1, then we derive that

nβ(α−ε) [Hn (f, x)− f (x)] → 0

as n → ∞, 0 < ε ≤ α. Of great interest is the case of α = 1
2 .

Next we also need,

Theorem 2.8. ([6], Ch.5) Let α > 0, N ∈ N, N = ⌈α⌉, f ∈ ACN ([a, b]), 0 < β <
1, x ∈ [a, b], n ∈ N large enough. Assume that

∥∥Dα
x−f

∥∥
∞,[a,x]

, ∥Dα
∗xf∥∞,[x,b] ≤ Θ,

Θ > 0. Then

En (f, x)− f (x) =

N−1∑
j=1

f (j) (x)

j!
En

(
(· − x)j

)
(x) + o

(
1

nβ(α−ε)

)
, (17)

where 0 < ε ≤ α.
If N = 1, the sum in (17) collapses.
The last (17) implies that

nβ(α−ε)

En (f, x)− f (x)−
N−1∑
j=1

f (j) (x)

j!
En

(
(· − x)j

)
(x)

 → 0, (18)

as n → ∞, 0 < ε ≤ α.
When N = 1, or f (j) (x) = 0, j = 1, ..., N − 1, then we derive that

nβ(α−ε) [En (f, x)− f (x)] → 0

as n → ∞, 0 < ε ≤ α. Of great interest is the case of α = 1
2 .

3. About Brownian Motion on 2−Dimensional Sphere

The Brownian motion ([13]) on Sn is a diffusion (Markov) process Wt, t ≥ 0, on
Sn whose transition density is a function P (t, x, y) on (0,∞)× Sn × Sn satisfying

∂P

∂t
=

1

2
∆nP, (19)
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and

P (t, x, y) → δx(y) as t → 0+ (20)

where ∆n is the Laplace-Beltrami operator of Sn acting on the x-variables and δx(y)
is the delta mass at x, i.e. P (t, x, y) is the heat kernel of Sn. The heat kernel exists,
it is unique, positive, and smooth in (t, x, y).

We mention,

Proposition 3.1. ([13]) The transition density function of the Brownian motion
Wt, t ≥ 0 on S2 with radius a it is given by the function

p(t, φ) =
1

4πa2

∑
n∈N

(2n+ 1) exp

(
−n(n+ 1)

√
t

a

)
P 0
n(cosφ) (21)

Theorem 3.2. ([8]) Consider function g : R → R, which is bounded on [0, π], i.e.
there exists M > 0 such that |g(ϕ)| ≤ M, for every ϕ ∈ [0, π] , and Lebesgue mea-
surable on R. Let also W (t, ϕ) be the Brownian motion on S2. Then the expectation

E (|g(W )|) (t) =
∫ π

0
|g(ϕ)| p(t, ϕ)dϕ (22)

is continuous in t, and

E (|g(W )|) (t) ≤ πMp (to, ϕ0) , (23)

where

p (t0, ϕ0) = max
(t,ϕ)∈[t1,t2]×[0,π]

p (t, ϕ) , with 0 < t1 < t2.

Here p(t, ϕ) is the transition density function of the Brownian motion Wt, t ≥ 0 on
S2 given by (21).

Proposition 3.3. ([8]) Consider function g : R → R, which is bounded on [0, π]
and Lebesgue measurable on R. Let also W (t, ϕ) be the Brownian motion on S2.
Then the expectation

E (|g(W )|) (t) =
∫ π

0
|g(ϕ)| p(t, ϕ)dϕ

is differentiable in t, and

∂E (|g(W )|)
∂t

=

∫ π

0
|g(ϕ)| ∂ (p(t, ϕ))

∂t
dϕ, (24)

which is continuous in t.

Remark 3.1. We observe that p(t, φ) ∈ C∞ (R+ − {0}) with respect to t > 0.

Acting similarly as in Proposition 3.3, we obtain that E (|g(W )|)(j) := ∂jE(|g(W )|)
∂tj

exist and are continuous for t > 0 and any j ∈ N.
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4. Main Results

Here we present the following results about Brownian Motion by neural network
operators.

Proposition 4.1. We consider E (|g(W )|) (t) as in (22). Let α > 0, N ∈ N,
N = ⌈α⌉, 0 < β < 1, t ∈ [t1, t2], where t1 > 0, t1 < t2, n ∈ N large enough. Then

Hn (E (|g(W )|) , t)− (E (|g(W )|) (t)) =
N−1∑
j=1

E (|g(W )|)(j) (t)
j!

Hn

(
(· − t)j

)
(t) + o

(
1

nβ(α−ε)

)
, (25)

where 0 < ε ≤ α.
If N = 1, the sum in (25) collapses.
The last (25) implies that

nβ(α−ε) [Hn (E (|g(W )|) , t)− (E (|g(W )|) (t))−
N−1∑
j=1

E (|g(W )|)(j) (t)
j!

Hn

(
(· − t)j

)
(t)

 → 0, (26)

as n → ∞, 0 < ε ≤ α.
When N = 1, we derive that

nβ(α−ε) [Hn (E (|g(W )|) , t)− (E (|g(W )|) (t))] → 0

as n → ∞, 0 < ε ≤ α. Of great interest is the case of α = 1
2 .

Proof. From Theorem 2.7. □

Next we give,

Proposition 4.2. We consider E (|g(W )|) (t) as in (22). Let α > 0, N ∈ N,
N = ⌈α⌉, t ∈ [t1, t2], where t1 > 0, t1 < t2, n ∈ N large enough. Then

En (E (|g(W )|) , t)− (E (|g(W )|) (t)) =
N−1∑
j=1

E (|g(W )|)(j) (t)
j!

En

(
(· − t)j

)
(t) + o

(
1

nβ(α−ε)

)
, (27)

where 0 < ε ≤ α.
If N = 1, the sum in (27) collapses.
The last (27) implies that

nβ(α−ε) [En (E (|g(W )|) , t)− (E (|g(W )|) (t))−
N−1∑
j=1

E (|g(W )|)(j) (t)
j!

En

(
(· − t)j

)
(t)

 → 0, (28)

as n → ∞, 0 < ε ≤ α.
When N = 1, we derive that

nβ(α−ε) [En (E (|g(W )|) , t)− (E (|g(W )|) (t))] → 0

as n → ∞, 0 < ε ≤ α. Of great interest is the case of α = 1
2 .
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Proof. From Theorem 2.8. □

5. Applications

We can apply our main results to the function g(W ) = W .
Consider the function g : R → R, where g(x) = x for every x ∈ R. Let also W (t, ϕ)
be the Brownian motion on S2. Then the expectation

E (|W |) (t) =
∫ π

0
ϕp(t, ϕ)dϕ

is continuous in t.
Moreover

Corollary 5.1. Let α > 0, N ∈ N, N = ⌈α⌉, 0 < β < 1, t ∈ [t1, t2], where
t1 > 0, t1 < t2, n ∈ N large enough. Then

Hn (E (|W |) , t)− (E (|W |) (t)) =
N−1∑
j=1

E (|W |)(j) (t)
j!

Hn

(
(· − t)j

)
(t)+ o

(
1

nβ(α−ε)

)
,

(29)
where 0 < ε ≤ α.

If N = 1, the sum in (29) collapses.
The last (29) implies that

nβ(α−ε)

Hn (E (|W |) , t)− (E (|W |) (t))−
N−1∑
j=1

E (|W |)(j) (t)
j!

Hn

(
(· − t)j

)
(t)

 → 0,

(30)
as n → ∞, 0 < ε ≤ α.

When N = 1, we derive that

nβ(α−ε) [Hn (E (|W |) , t)− (E (|W |) (t))] → 0

as n → ∞, 0 < ε ≤ α. Of great interest is the case of α = 1
2 .

Proof. From Proposition 4.1. □

Next we obtain,

Corollary 5.2. We consider N ∈ N, N = ⌈α⌉, t ∈ [t1, t2], where t1 > 0, t1 <
t2, n ∈ N large enough. Then

En (E (|W |) , t)− (E (|W |) (t)) =
N−1∑
j=1

E (|W |)(j) (t)
j!

En

(
(· − t)j

)
(t) + o

(
1

nβ(α−ε)

)
,

(31)
where 0 < ε ≤ α.

If N = 1, the sum in (31) collapses.
The last (31) implies that

nβ(α−ε)

En (E (|W |) , t)− (E (|W |) (t))−
N−1∑
j=1

E (|W |)(j) (t)
j!

En

(
(· − t)j

)
(t)

 → 0,

(32)
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as n → ∞, 0 < ε ≤ α.
When N = 1, we derive that

nβ(α−ε) [En (E (|W |) , t)− (E (|W |) (t))] → 0

as n → ∞, 0 < ε ≤ α. Of great interest is the case of α = 1
2 .

Proof. From Proposition 4.2. □

For the next corollaries we consider the function g : R → R, where g(x) = cosx for
every x ∈ R. Let also W (t, ϕ) be the Brownian motion on S2. Then the expectation

E (|cos (W )|) (t) =
∫ π

0
|cosϕ| p(t, ϕ)dϕ

is continuous in t.
It follows,

Corollary 5.3. Let α > 0, N ∈ N, N = ⌈α⌉, 0 < β < 1, t ∈ [t1, t2], where
t1 > 0, t1 < t2, n ∈ N large enough. Then

Hn (E (|cos (W )|) , t)− (E (|cos (W )|) (t)) =
N−1∑
j=1

E (|cos (W )|)(j) (t)
j!

Hn

(
(· − t)j

)
(t) + o

(
1

nβ(α−ε)

)
, (33)

where 0 < ε ≤ α.
If N = 1, the sum in (33) collapses.
The last (33) implies that

nβ(α−ε) [Hn (E (|cos (W )|) , t)− (E (|cos (W )|) (t))−
N−1∑
j=1

E (|cos (W )|)(j) (t)
j!

Hn

(
(· − t)j

)
(t)

 → 0, (34)

as n → ∞, 0 < ε ≤ α.
When N = 1, we derive that

nβ(α−ε) [Hn (E (|cos (W )|) , t)− (E (|cos (W )|) (t))] → 0

as n → ∞, 0 < ε ≤ α. Of great interest is the case of α = 1
2 .

Proof. From Proposition 4.1. □

Next we obtain,

Corollary 5.4. We consider N ∈ N, N = ⌈α⌉, t ∈ [t1, t2], where t1 > 0, t1 <
t2, n ∈ N large enough. Then

En (E (|cos (W )|) , t)− (E (|cos (W )|) (t)) =
N−1∑
j=1

E (|cos (W )|)(j) (t)
j!

En

(
(· − t)j

)
(t) + o

(
1

nβ(α−ε)

)
, (35)

where 0 < ε ≤ α.
If N = 1, the sum in (35) collapses.
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The last (35) implies that

nβ(α−ε) [En (E (|cos (W )|) , t)− (E (|cos (W )|) (t))−

N−1∑
j=1

E (|cos (W )|)(j) (t)
j!

En

(
(· − t)j

)
(t)

 → 0, (36)

as n → ∞, 0 < ε ≤ α.
When N = 1, we derive that

nβ(α−ε) [En (E (|cos (W )|) , t)− (E (|cos (W )|) (t))] → 0

as n → ∞, 0 < ε ≤ α. Of great interest is the case of α = 1
2 .

Proof. From Proposition 4.2. □

Note 5.5. Similar results can be obtain for g : R → R, where g(x) = sinx, x ∈ R

Let the function g : R → R, where g(x) = tanhx for every x ∈ R. Let also W (t, ϕ)
be the Brownian motion on S2. Then the expectation

E (|tanh (W )|) (t) =
∫ π

0
|tanh(ϕ)| p(t, ϕ)dϕ

is continuous in t.
Furthermore,

Corollary 5.6. Let α > 0, N ∈ N, N = ⌈α⌉, 0 < β < 1, t ∈ [t1, t2], where
t1 > 0, t1 < t2, n ∈ N large enough. Then

Hn (E (|tanh (W )|) , t)− (E (|tanh (W )|) (t)) =
N−1∑
j=1

E (|tanh (W )|)(j) (t)
j!

Hn

(
(· − t)j

)
(t) + o

(
1

nβ(α−ε)

)
, (37)

where 0 < ε ≤ α.
If N = 1, the sum in (37) collapses.
The last (37) implies that

nβ(α−ε) [Hn (E (|tanh (W )|) , t)− (E (|tanh (W )|) (t))−

N−1∑
j=1

E (|tanh (W )|)(j) (t)
j!

Hn

(
(· − t)j

)
(t)

 → 0, (38)

as n → ∞, 0 < ε ≤ α.
When N = 1, we derive that

nβ(α−ε) [Hn (E (|tanh (W )|) , t)− (E (|tanh (W )|) (t))] → 0

as n → ∞, 0 < ε ≤ α. Of great interest is the case of α = 1
2 .

Proof. From Proposition 4.1. □

Next we give,
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Corollary 5.7. We consider N ∈ N, N = ⌈α⌉, t ∈ [t1, t2], where t1 > 0, t1 <
t2, n ∈ N large enough. Then

En (E (|tanh (W )|) , t)− (E (|tanh (W )|) (t)) =
N−1∑
j=1

E (|tanh (W )|)(j) (t)
j!

En

(
(· − t)j

)
(t) + o

(
1

nβ(α−ε)

)
, (39)

where 0 < ε ≤ α.
If N = 1, the sum in (39) collapses.
The last (39) implies that

nβ(α−ε) [En (E (|tanh (W )|) , t)− (E (|tanh (W )|) (t))−

N−1∑
j=1

E (|tanh (W )|)(j) (t)
j!

En

(
(· − t)j

)
(t)

 → 0, (40)

as n → ∞, 0 < ε ≤ α.
When N = 1, we derive that

nβ(α−ε) [En (E (|tanh (W )|) , t)− (E (|tanh (W )|) (t))] → 0

as n → ∞, 0 < ε ≤ α. Of great interest is the case of α = 1
2 .

Proof. From Proposition 4.2. □

For the next application we consider the generalized logistic sigmoid function
g : R → R, where
g(x) = (1 + e−x)

−δ
, and δ > 0, for every x ∈ R. Let also W (t, ϕ) be the Brownian

motion on S2. Then the expectation

E
((

1 + e−W
)−δ

)
(t) =

∫ π

0

(
1 + e−ϕ

)−δ
p(t, ϕ)dϕ

is continuous in t.
It follows,

Corollary 5.8. Let α > 0, N ∈ N, N = ⌈α⌉, 0 < β < 1, t ∈ [t1, t2], where
t1 > 0, t1 < t2, n ∈ N large enough. Then

Hn

(
E
((

1 + e−W
)−δ

)
, t
)
−
(
E
((

1 + e−W
)−δ

)
(t)

)
=

N−1∑
j=1

E
((

1 + e−W
)−δ

)(j)
(t)

j!
Hn

(
(· − t)j

)
(t) + o

(
1

nβ(α−ε)

)
, (41)

where 0 < ε ≤ α.
If N = 1, the sum in (41) collapses.
The last (41) implies that

nβ(α−ε)·[
Hn

(
E
((

1 + e−W
)−δ

)
, t
)
−
(
E
((

1 + e−W
)−δ

)
(t)

)
−
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N−1∑
j=1

E
((

1 + e−W
)−δ

)(j)
(t)

j!
Hn

(
(· − t)j

)
(t)

 → 0, (42)

as n → ∞, 0 < ε ≤ α.
When N = 1, we derive that

nβ(α−ε)
[
Hn

(
E
((

1 + e−W
)−δ

)
, t
)
−
(
E
((

1 + e−W
)−δ

)
(t)

)]
→ 0

as n → ∞, 0 < ε ≤ α. Of great interest is the case of α = 1
2 .

Proof. From Proposition 4.1. □

Next we derive,

Corollary 5.9. We consider N ∈ N, N = ⌈α⌉, t ∈ [t1, t2], where t1 > 0, t1 <
t2, n ∈ N large enough. Then

En

(
E
((

1 + e−W
)−δ

)
, t
)
−
(
E
((

1 + e−W
)−δ

)
(t)

)
=

N−1∑
j=1

E
((

1 + e−W
)−δ

)(j)
(t)

j!
En

(
(· − t)j

)
(t) + o

(
1

nβ(α−ε)

)
, (43)

where 0 < ε ≤ α.
If N = 1, the sum in (43) collapses.
The last (43) implies that

nβ(α−ε)·[
En

(
E
((

1 + e−W
)−δ

)
, t
)
−
(
E
((

1 + e−W
)−δ

)
(t)

)
−

N−1∑
j=1

E
((

1 + e−W
)−δ

)(j)
(t)

j!
En

(
(· − t)j

)
(t)

 → 0, (44)

as n → ∞, 0 < ε ≤ α.
When N = 1, we derive that

nβ(α−ε)
[
En

(
E
((

1 + e−W
)−δ

)
, t
)
−
(
E
((

1 + e−W
)−δ

)
(t)

)]
→ 0

as n → ∞, 0 < ε ≤ α. Of great interest is the case of α = 1
2 .

Proof. From Proposition 4.2. □

The Gompertz function g : R → R, with g(x) = eµe
−x

, µ < 0 is a sigmoid function
which describes growth as being slowest at the start and end of a given time period.
Let W (t, ϕ) be the Brownian motion on S2. Then the expectation

E
(
eµe

−W
)
(t) =

∫ π

0
eµe

−ϕ
p(t, ϕ)dϕ

is continuous in t.
Moreover,
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Corollary 5.10. Let α > 0, N ∈ N, N = ⌈α⌉, 0 < β < 1, t ∈ [t1, t2], where
t1 > 0, t1 < t2, n ∈ N large enough. Then

Hn

(
E
(
eµe

−W
)
, t
)
−
(
E
(
eµe

−W
)
(t)

)
=

N−1∑
j=1

E
(
eµe

−W
)(j)

(t)

j!
Hn

(
(· − t)j

)
(t) + o

(
1

nβ(α−ε)

)
, (45)

where 0 < ε ≤ α.
If N = 1, the sum in (45) collapses.
The last (45) implies that

nβ(α−ε)
[
Hn

(
E
(
eµe

−W
)
, t
)
−
(
E
(
eµe

−W
)
(t)

)
−

N−1∑
j=1

E
(
eµe

−W
)(j)

(t)

j!
Hn

(
(· − t)j

)
(t)

 → 0, (46)

as n → ∞, 0 < ε ≤ α.
When N = 1, we derive that

nβ(α−ε)
[
Hn

(
E
(
eµe

−W
)
, t
)
−
(
E
(
eµe

−W
)
(t)

)]
→ 0

as n → ∞, 0 < ε ≤ α. Of great interest is the case of α = 1
2 .

Proof. From Proposition 4.1. □

Next we give,

Corollary 5.11. We consider N ∈ N, N = ⌈α⌉, t ∈ [t1, t2], where t1 > 0, t1 <
t2, n ∈ N large enough. Then

En

(
E
(
eµe

−W
)
, t
)
−
(
E
(
eµe

−W
)
(t)

)
=

N−1∑
j=1

E
(
eµe

−W
)(j)

(t)

j!
En

(
(· − t)j

)
(t) + o

(
1

nβ(α−ε)

)
, (47)

where 0 < ε ≤ α.
If N = 1, the sum in (47) collapses.
The last (47) implies that

nβ(α−ε)
[
En

(
E
(
eµe

−W
)
, t
)
−
(
E
(
eµe

−W
)
(t)

)
−

N−1∑
j=1

E
(
eµe

−W
)(j)

(t)

j!
En

(
(· − t)j

)
(t)

 → 0, (48)

as n → ∞, 0 < ε ≤ α.
When N = 1, we derive that

nβ(α−ε)
[
En

(
E
(
eµe

−W
)
, t
)
−
(
E
(
eµe

−W
)
(t)

)]
→ 0
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as n → ∞, 0 < ε ≤ α. Of great interest is the case of α = 1
2 .

Proof. From Proposition 4.2. □

Conclusion:
Using mathematical analysis methods we derived Voronovskaya type fractional

asymptotic expansions for the general expectation of Brownian motion over the two
dimensional sphere. These are realated to neural network approximation operators
which are activated by the sigmoidal and hyperbolic tangent functions.
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